WOO logo

On this page

Pineapple

On this page

Introduction

This section aims to explain how to make the initial decision regarding your hand in the poker variant known as Pineapple. If you're unfamiliar, Pineapple is similar to Texas Hold 'Em, but players receive three hole cards and must discard one after a preliminary betting round, prior to the flop. It’s important not to confuse this with Crazy Pineapple, where the card removal happens right before the Turn, or Lazy Pineapple, where players retain all three cards throughout the gameplay.

This section's primary focus is on the choice of which card to discard, along with an examination of the strength of each starting hand. On this page, you will discover statistics regarding expected value, which indicates how much a player can anticipate returning based on a single unit ante. For instance, an expected return of 1.000 implies that a player is breaking even.

A term you'll frequently encounter here is 'penalty', a concept borrowed from video poker. This refers to the act of discarding a card that might have been beneficial. Specifically, a rank penalty occurs when you toss away a card after being dealt a three of a kind. This can be quite disheartening in Pineapple, as losing one of these cards not only diminishes your hand's value but also reduces the total number of cards available to potentially improve your pair. Suit penalties are even more common; discarding a suited card that matches one you are keeping decreases your chances of achieving a flush. Ideally, you want to avoid any kind of penalty altogether.

PL Recommended Online Poker Rooms in Poland

View All

100 % up to

600€

100 % up to

1000$

200 % up to

1000$

+25 spins

100 % up to

1000$

Assumptions

This section assumes a scenario where six players engage in a game where nobody ever folds or raises. Each participant contributes one unit as an ante, and the player with the best hand at the conclusion of the game wins.

Three of a Kind

The strategy when you are dealt three of a kind is straightforward—simply hold onto any two of those cards.

The table below illustrates the expected return of retaining any two cards when you're dealt a three of a kind.

Dealt Three of Kind

Rank Expected
Return
A 2.425
K 1.925
Q 1.563
J 1.297
10 1.084
9 0.899
8 0.777
7 0.687
6 0.624
5 0.571
4 0.521
3 0.483
2 0.448

Pair without Suit Penalty

When you have a pair, the strategy is quite simple—keep the pair.

The subsequent table displays the expected returns for the two effective strategies when dealt a pair and an unrelated card, provided that the single card is not suited to any of the cards in the pair. You can either hold the pair or the singleton alongside either of the two in the pair. The data clearly indicates that maintaining the pair is consistently the option with the highest expected value.

Dealt Three of Kind

Rank Singleton Pair Two
Singletons
A K 2.708 1.289
A Q 2.719 1.159
A J 2.729 1.059
A 10 2.740 0.985
A 9 2.739 0.827
A 8 2.734 0.785
A 7 2.736 0.753
A 6 2.737 0.722
A 5 2.734 0.777
A 4 2.719 0.753
A 3 2.701 0.728
A 2 2.674 0.694
K A 2.392 1.276
K Q 2.224 1.082
K J 2.237 0.999
K 10 2.245 0.936
K 9 2.246 0.784
K 8 2.243 0.683
K 7 2.245 0.661
K 6 2.247 0.641
K 5 2.245 0.622
K 4 2.234 0.603
K 3 2.219 0.582
K 2 2.201 0.562
K Q 1.999 1.147
A Q 1.994 1.080
K Q 1.865 0.975
J 10 1.880 0.920
Q 9 1.876 0.773
Q 8 1.877 0.676
Return 7 1.879 0.592
A 6 1.881 0.580
K 5 1.880 0.564
Q 4 1.873 0.543
J 3 1.859 0.525
Pair without Suit Penalty 2 1.847 0.509
Dealt Three of Kind Rank 1.702 1.052
Singleton Pair 1.696 0.998
Two Singletons 1.696 0.971
A 10 1.601 0.931
K 9 1.600 0.792
A 8 1.599 0.696
Q 7 1.601 0.610
A 6 1.603 0.537
J 5 1.606 0.523
A 4 1.597 0.506
A 3 1.591 0.488
A 2 1.582 0.474
10 A 1.466 0.980
10 A 1.465 0.934
10 A 1.464 0.918
10 A 1.465 0.926
10 9 1.388 0.823
10 8 1.388 0.734
10 7 1.388 0.650
10 6 1.394 0.569
10 5 1.394 0.497
10 4 1.388 0.481
10 3 1.383 0.465
10 2 1.377 0.453
9 A 1.284 0.815
9 A 1.288 0.767
9 K 1.286 0.755
9 A 1.287 0.769
9 10 1.288 0.803
9 8 1.223 0.720
9 7 1.224 0.663
9 6 1.226 0.591
9 5 1.226 0.513
9 4 1.225 0.438
9 3 1.221 0.426
9 2 1.216 0.414
8 K 1.159 0.774
8 Q 1.159 0.669
8 K 1.160 0.655
8 J 1.163 0.672
8 10 1.162 0.708
8 9 1.159 0.708
8 7 1.110 0.688
8 6 1.110 0.635
8 5 1.112 0.560
8 4 1.109 0.479
8 3 1.108 0.407
8 2 1.103 0.398
7 K 1.059 0.739
7 K 1.063 0.649
7 K 1.066 0.577
7 K 1.068 0.584
7 10 1.069 0.620
7 9 1.062 0.643
7 8 1.065 0.673
7 6 1.021 0.661
7 5 1.027 0.609
7 4 1.024 0.532
7 3 1.024 0.451
7 2 1.022 0.383
6 K 0.989 0.713
6 K 0.994 0.629
6 K 0.994 0.564
6 K 1.000 0.515
6 10 1.000 0.541
6 9 0.997 0.568
6 8 0.996 0.617
6 7 0.995 0.650
6 5 0.962 0.643
6 4 0.961 0.584
6 3 0.959 0.508
6 2 0.960 0.429
5 K 0.931 0.775
5 K 0.935 0.613
5 Q 0.937 0.552
5 A 0.939 0.507
5 10 0.943 0.476
5 9 0.940 0.494
5 8 0.940 0.543
5 7 0.940 0.597
5 6 0.937 0.635
5 4 0.911 0.633
5 3 0.906 0.571
5 2 0.909 0.500
4 Q 0.882 0.749
4 K 0.887 0.590
4 Q 0.891 0.530
4 J 0.891 0.487
4 10 0.893 0.458
4 9 0.894 0.420
4 8 0.891 0.460
4 7 0.895 0.514
4 6 0.891 0.570
4 5 0.891 0.623
4 3 0.866 0.534
4 2 0.864 0.478
3 Q 0.843 0.723
3 Q 0.848 0.568
3 Return 0.850 0.509
3 A 0.852 0.467
3 10 0.853 0.440
3 9 0.851 0.404
3 8 0.854 0.386
3 7 0.853 0.429
3 6 0.853 0.488
3 5 0.851 0.556
3 4 0.851 0.525
3 2 0.829 0.440
2 K 0.816 0.683
2 Q 0.818 0.544
2 J 0.823 0.489
2 Pair without Suit Penalty 0.823 0.445
2 10 0.826 0.421
2 9 0.824 0.386
2 8 0.823 0.374
2 7 0.826 0.360
2 6 0.824 0.403
2 5 0.824 0.478
2 4 0.823 0.459
2 3 0.821 0.431

Dealt Three of Kind

When you have a pair, the strategy is quite simple—keep the pair.

The following table presents the expected returns for all three potential options when holding a pair and a singleton, with the singleton being suited to one of the cards in the pair. Having suited cards is disadvantageous since it lowers the probability of completing a flush with the pair. The table further confirms that retaining the pair significantly yields the best expected value.

Rank

Singleton Pair Two Singletons
A
K
A
Q A 2.678 1.496 1.272
J A 2.690 1.379 1.143
A A 2.704 1.287 1.045
A 10 2.714 1.224 0.975
A 9 2.712 1.080 0.820
A 8 2.707 1.042 0.777
A 7 2.708 1.013 0.745
A 6 2.710 0.986 0.713
A 5 2.708 1.037 0.768
K 4 2.691 1.014 0.744
A 3 2.672 0.995 0.722
K 2 2.650 0.962 0.687
Q K 2.378 1.485 1.250
J K 2.205 1.300 1.072
K K 2.214 1.221 0.986
K 10 2.222 1.168 0.926
K 9 2.223 1.026 0.773
K 8 2.224 0.936 0.675
K 7 2.224 0.915 0.652
K 6 2.226 0.899 0.635
K 5 2.226 0.884 0.618
K 4 2.210 0.863 0.594
Q 3 2.198 0.846 0.576
A 2 2.181 0.828 0.557
Q K 1.984 1.367 1.119
Q J 1.980 1.295 1.057
Q Q 1.849 1.192 0.961
Q 10 1.858 1.145 0.911
Q 9 1.856 1.007 0.762
Q 8 1.858 0.921 0.668
Q 7 1.865 0.848 0.587
Q 6 1.858 0.834 0.573
Q 5 1.860 0.822 0.558
Q 4 1.854 0.803 0.539
J 3 1.841 0.787 0.521
A 2 1.828 0.769 0.503
J K 1.686 1.280 1.024
J Q 1.687 1.221 0.975
J J 1.684 1.189 0.953
J 10 1.587 1.150 0.922
J 9 1.582 1.019 0.781
J 8 1.584 0.936 0.689
J 7 1.585 0.856 0.603
J 6 1.592 0.784 0.529
J 5 1.589 0.777 0.518
J 4 1.584 0.758 0.500
A 3 1.576 0.744 0.483
K 2 1.566 0.730 0.468
10 Q 1.459 1.220 0.957
10 J 1.454 1.169 0.917
10 A 1.456 1.144 0.901
10 K 1.456 1.145 0.912
10 9 1.371 1.048 0.816
10 8 1.372 0.962 0.724
10 7 1.374 0.885 0.641
10 6 1.378 0.813 0.562
10 5 1.383 0.744 0.490
10 4 1.374 0.733 0.476
10 3 1.369 0.717 0.460
10 2 1.364 0.703 0.447
9 Q 1.276 1.068 0.792
9 J 1.275 1.011 0.746
9 A 1.278 0.992 0.737
9 K 1.280 0.999 0.754
9 10 1.280 1.027 0.789
9 8 1.212 0.949 0.713
9 7 1.212 0.896 0.656
9 6 1.213 0.827 0.583
9 5 1.214 0.757 0.507
9 4 1.215 0.688 0.433
9 3 1.210 0.676 0.422
9 2 1.205 0.661 0.407
8 Q 1.148 1.029 0.748
8 J 1.149 0.923 0.652
8 A 1.154 0.902 0.639
8 K 1.155 0.911 0.658
8 10 1.153 0.939 0.695
8 9 1.150 0.934 0.694
8 7 1.099 0.915 0.678
8 6 1.101 0.866 0.627
8 5 1.102 0.799 0.556
8 4 1.100 0.722 0.474
8 3 1.097 0.653 0.401
8 2 1.094 0.644 0.394
7 Q 1.053 1.000 0.715
7 J 1.054 0.904 0.627
7 A 1.058 0.829 0.560
7 K 1.059 0.831 0.570
7 10 1.062 0.862 0.612
7 9 1.057 0.878 0.633
7 8 1.054 0.902 0.663
7 6 1.016 0.889 0.655
7 5 1.016 0.841 0.605
7 4 1.014 0.763 0.524
7 3 1.014 0.689 0.445
7 2 1.013 0.625 0.379
6 Q 0.984 0.975 0.688
6 J 0.985 0.888 0.610
6 A 0.988 0.820 0.549
6 K 0.991 0.768 0.503
6 10 0.992 0.785 0.529
6 9 0.988 0.808 0.558
6 8 0.988 0.848 0.606
6 7 0.986 0.877 0.641
6 5 0.953 0.868 0.637
6 4 0.952 0.811 0.577
6 3 0.950 0.737 0.500
6 2 0.949 0.663 0.424
5 Q 0.924 1.037 0.752
5 J 0.930 0.876 0.596
5 A 0.931 0.811 0.538
5 K 0.933 0.760 0.494
5 10 0.939 0.725 0.464
5 9 0.936 0.740 0.484
5 8 0.931 0.783 0.535
5 7 0.933 0.827 0.587
5 6 0.930 0.859 0.626
5 4 0.900 0.855 0.627
5 3 0.900 0.798 0.568
5 2 0.902 0.727 0.496
4 Q 0.876 1.011 0.726
4 J 0.880 0.856 0.573
4 A 0.884 0.792 0.516
4 K 0.885 0.742 0.473
4 10 0.886 0.712 0.449
4 9 0.888 0.670 0.410
4 8 0.887 0.704 0.452
4 7 0.886 0.749 0.505
4 6 0.884 0.796 0.561
4 5 0.883 0.848 0.618
4 3 0.859 0.759 0.530
4 2 0.858 0.704 0.474
3 Q 0.839 0.989 0.699
3 J 0.840 0.834 0.549
3 Q 0.846 0.771 0.494
3 Q 0.847 0.724 0.453
3 10 0.849 0.694 0.429
3 9 0.846 0.656 0.394
3 8 0.848 0.634 0.378
3 7 0.846 0.669 0.421
3 6 0.846 0.721 0.481
3 5 0.845 0.781 0.549
3 4 0.843 0.749 0.518
3 2 0.822 0.667 0.436
2 Q 0.811 0.954 0.660
2 Q 0.813 0.813 0.526
2 Q 0.816 0.751 0.472
2 Q 0.817 0.707 0.434
2 10 0.819 0.675 0.410
2 9 0.816 0.640 0.377
2 8 0.819 0.623 0.366
2 7 0.818 0.603 0.352
2 6 0.816 0.641 0.397
2 5 0.819 0.704 0.470
2 4 0.817 0.687 0.454
2 3 0.815 0.660 0.427

Q

This table outlines the expected returns for all three potential strategies when you have three suited singletons. Typically, the best play is to discard the lowest-ranked one. However, if all your cards hold low values, and the two lowest are close in rank while the highest is not, you might consider pursuing a straight by keeping the two lowest.

J

A J K
J
Q
J
J
J
J
J
J
J J 1.541 1.443 1.405
J A 1.550 1.325 1.305
K 10 1.550 1.240 1.230
Q 9 1.559 1.102 1.093
J 8 1.548 1.053 0.988
A 7 1.557 1.016 0.967
K 6 1.551 0.986 0.942
Q 5 1.559 1.031 0.924
J 4 1.554 1.012 0.903
A 3 1.543 0.987 0.885
K 2 1.536 0.955 0.865
Q J 1.402 1.325 1.245
A 10 1.399 1.238 1.185
K 9 1.415 1.099 1.055
Q 8 1.414 1.054 0.957
J 7 1.412 1.018 0.885
A 6 1.417 0.987 0.870
K 5 1.418 1.032 0.852
Q 4 1.411 1.009 0.831
J 3 1.405 0.987 0.814
A 2 1.398 0.954 0.800
K 10 1.298 1.238 1.174
Q 9 1.307 1.099 1.048
J 8 1.306 1.052 0.952
A 7 1.305 1.021 0.877
K 6 1.307 0.990 0.813
Q 5 1.310 1.028 0.798
J 4 1.306 1.013 0.780
A 3 1.305 0.989 0.767
K 2 1.295 0.956 0.752
Q 9 1.228 1.099 1.068
J 8 1.229 1.054 0.979
Q 7 1.227 1.015 0.895
Q 6 1.233 0.992 0.828
Q 5 1.234 1.037 0.764
Q 4 1.229 1.010 0.747
Q 3 1.225 0.990 0.735
Q 2 1.223 0.959 0.722
Q 8 1.078 1.046 0.969
J 7 1.079 1.015 0.915
A 6 1.079 0.985 0.845
J 5 1.083 1.031 0.779
K 4 1.077 1.010 0.709
J 3 1.079 0.989 0.704
Q 2 1.070 0.951 0.686
J 7 1.032 1.010 0.926
J 6 1.031 0.982 0.880
J 5 1.034 1.026 0.814
J 4 1.037 1.011 0.739
J 3 1.034 0.990 0.679
J 2 1.025 0.953 0.670
J 6 0.997 0.978 0.904
J 7 1.000 1.028 0.854
J 7 1.003 1.009 0.783
A 3 0.998 0.988 0.710
K 2 0.996 0.962 0.650
Q 6 0.971 1.025 0.883
J 6 0.973 1.005 0.829
A 6 0.970 0.986 0.762
K 2 0.969 0.961 0.688
Q 4 1.003 0.990 0.855
J 3 1.003 0.971 0.800
A 2 1.001 0.944 0.731
K 3 0.981 0.967 0.766
Q 2 0.982 0.941 0.713
J 2 0.959 0.937 0.686
A K 1.300 1.239 1.234
Q 10 1.303 1.166 1.170
J 9 1.316 1.030 1.045
A 8 1.324 0.950 0.961
K 7 1.321 0.923 0.878
Q 6 1.324 0.904 0.867
J 5 1.326 0.886 0.852
A 4 1.321 0.868 0.836
K 3 1.316 0.844 0.816
Q 2 1.309 0.829 0.801
J 10 1.216 1.170 1.159
A 9 1.227 1.033 1.038
K 8 1.239 0.953 0.964
Q 7 1.239 0.930 0.880
J 6 1.235 0.906 0.813
A 5 1.239 0.891 0.804
K 4 1.232 0.864 0.780
Q 3 1.227 0.849 0.769
J 2 1.223 0.830 0.752
A 9 1.156 1.027 1.046
K 8 1.172 0.952 0.981
Q 7 1.170 0.927 0.899
J 6 1.174 0.907 0.825
A 5 1.173 0.888 0.763
K 4 1.169 0.867 0.747
Q 3 1.167 0.851 0.736
J 2 1.164 0.831 0.721
Pair with Suit Penalty 8 1.017 0.946 0.976
Dealt Three of Kind 7 1.023 0.925 0.914
Rank 6 1.018 0.901 0.845
Singleton 5 1.023 0.888 0.779
Pair 4 1.023 0.869 0.714
Suited 3 1.016 0.849 0.701
Singletons 2 1.014 0.832 0.689
Unsuited Singletons 0.931 0.917 0.933
A 6 0.931 0.897 0.882
K 5 0.935 0.884 0.816
A 4 0.934 0.866 0.745
Q 3 0.930 0.848 0.682
A 2 0.927 0.826 0.675
J 6 0.906 0.894 0.901
A 5 0.908 0.880 0.857
A 4 0.908 0.866 0.785
A 3 0.907 0.848 0.714
A 2 0.905 0.833 0.655
A 5 0.883 0.874 0.880
A 4 0.883 0.859 0.824
A 3 0.888 0.846 0.760
A 2 0.886 0.831 0.689
A K 0.868 0.856 0.871
A 3 0.870 0.843 0.817
K 2 0.868 0.827 0.750
Q 3 0.850 0.840 0.784
K 2 0.847 0.822 0.728
J 2 0.828 0.818 0.699
K 10 1.156 1.119 1.142
K 9 1.174 0.995 1.022
K 8 1.181 0.914 0.948
K 7 1.199 0.859 0.881
K 6 1.191 0.842 0.810
K 5 1.198 0.826 0.801
K 4 1.190 0.806 0.781
K 3 1.186 0.786 0.763
K 2 1.182 0.775 0.755
K 9 1.114 0.993 1.034
Q 8 1.126 0.912 0.963
A 7 1.141 0.854 0.900
Q 6 1.143 0.841 0.824
A 5 1.139 0.825 0.763
K 4 1.140 0.808 0.746
Q 3 1.140 0.793 0.734
J 2 1.134 0.779 0.725
A 8 0.981 0.911 0.960
K 7 0.998 0.846 0.915
Q 6 0.997 0.840 0.841
J 5 0.997 0.826 0.777
Pair with Suit Penalty 4 0.999 0.810 0.712
Dealt Three of Kind 3 0.997 0.793 0.704
Rank 2 0.993 0.775 0.692
Singleton Pair 0.906 0.843 0.938
Suited 6 0.910 0.833 0.883
Singletons 5 0.909 0.821 0.818
Unsuited 4 0.909 0.805 0.742
Singletons 3 0.908 0.792 0.682
A 2 0.906 0.773 0.672
K A 0.837 0.833 0.913
Q A 0.836 0.816 0.860
J 4 0.839 0.806 0.788
A 3 0.840 0.788 0.715
A 2 0.832 0.773 0.655
A A 0.821 0.813 0.883
A A 0.826 0.801 0.830
A 3 0.823 0.786 0.761
A 2 0.824 0.774 0.690
A K 0.808 0.794 0.873
A K 0.806 0.781 0.817
Q 2 0.808 0.770 0.750
K 3 0.789 0.782 0.785
J 2 0.789 0.768 0.732
K 2 0.777 0.767 0.703
K 9 1.094 0.979 1.021
K 8 1.112 0.911 0.955
K 7 1.122 0.839 0.886
K 6 1.140 0.792 0.829
K 5 1.136 0.781 0.762
K 4 1.132 0.763 0.745
K 3 1.132 0.749 0.730
K 2 1.129 0.734 0.721
K 8 0.974 0.903 0.946
Q 7 0.991 0.841 0.907
A 6 1.006 0.791 0.853
Q 5 1.000 0.778 0.777
A 4 1.000 0.764 0.711
K 3 0.997 0.744 0.700
Q 2 0.998 0.731 0.689
J A 0.902 0.836 0.928
K 6 0.917 0.785 0.888
Q 5 0.920 0.776 0.817
J 4 0.918 0.758 0.741
Pair with Suit Penalty 3 0.913 0.743 0.679
Dealt Three of Kind 2 0.916 0.730 0.672
Rank Singleton 0.836 0.781 0.913
Pair Suited 0.838 0.771 0.858
Singletons 4 0.839 0.756 0.786
Unsuited 3 0.837 0.739 0.710
Singletons 2 0.839 0.734 0.655
A K 0.778 0.773 0.890
A Q 0.775 0.756 0.833
A 3 0.775 0.740 0.766
J 2 0.776 0.732 0.691
A A 0.765 0.756 0.875
A A 0.765 0.738 0.814
A 2 0.762 0.725 0.749
A A 0.751 0.743 0.788
A 2 0.749 0.729 0.731
A 2 0.734 0.725 0.702
K 8 0.982 0.915 0.929
A 7 0.997 0.850 0.887
K 6 1.007 0.792 0.833
Q 5 1.025 0.744 0.780
K 4 1.023 0.733 0.710
J 3 1.017 0.715 0.696
K 2 1.018 0.705 0.687
K 7 0.916 0.852 0.911
K 6 0.932 0.792 0.873
K 5 0.942 0.743 0.817
K 4 0.938 0.729 0.737
K 3 0.943 0.722 0.680
K 2 0.938 0.705 0.670
K 10 0.853 0.788 0.901
K 5 0.863 0.736 0.858
K 4 0.864 0.728 0.783
Q 3 0.867 0.717 0.709
A 2 0.865 0.709 0.654
Q 10 0.793 0.738 0.892
K 10 0.792 0.727 0.827
Q 3 0.794 0.714 0.762
J 2 0.790 0.700 0.687
Q 10 0.733 0.724 0.876
Q 10 0.732 0.711 0.822
Q 10 0.733 0.700 0.753
Q 10 0.718 0.709 0.784
Q 10 0.720 0.700 0.734
Q 2 0.706 0.699 0.702
Q 7 0.898 0.856 0.897
Q 6 0.910 0.800 0.857
Q 5 0.925 0.748 0.806
Q 4 0.941 0.698 0.746
J 3 0.934 0.682 0.677
A 2 0.929 0.673 0.669
J 9 0.858 0.800 0.886
K 5 0.869 0.744 0.847
J 4 0.883 0.689 0.788
Q 3 0.881 0.680 0.710
J 2 0.879 0.670 0.651
J 9 0.802 0.743 0.881
J 9 0.816 0.690 0.831
J 3 0.814 0.680 0.759
J 2 0.816 0.668 0.688
J 9 0.748 0.689 0.882
J 9 0.746 0.676 0.817
J 9 0.750 0.669 0.752
J 9 0.683 0.676 0.792
J 9 0.685 0.668 0.736
A 9 0.672 0.666 0.704
K 8 0.864 0.825 0.869
Q 5 0.875 0.772 0.832
J 4 0.890 0.712 0.773
A 3 0.907 0.665 0.715
K 2 0.902 0.657 0.653
Q 8 0.831 0.771 0.866
J 4 0.842 0.710 0.816
A 3 0.855 0.661 0.762
K 2 0.855 0.654 0.689
Q 8 0.775 0.706 0.864
J 8 0.791 0.658 0.823
A 2 0.786 0.652 0.748
K 8 0.717 0.657 0.796
Q 8 0.717 0.652 0.733
J 8 0.653 0.652 0.709
A 7 0.841 0.802 0.849
K 4 0.852 0.740 0.800
Q 3 0.868 0.683 0.746
J 2 0.882 0.637 0.693
A 7 0.804 0.742 0.852
K 3 0.819 0.680 0.808
Q 2 0.836 0.636 0.753
K 7 0.754 0.685 0.784
Q 2 0.769 0.637 0.740
J 7 0.694 0.639 0.715
Q 6 0.823 0.777 0.832
Q 3 0.838 0.720 0.790
Q 2 0.851 0.665 0.738
Q 3 0.782 0.718 0.762
Q 2 0.796 0.662 0.720
Q 2 0.732 0.661 0.696
Q 3 0.810 0.759 0.742
Q 2 0.826 0.711 0.700
Q 2 0.772 0.709 0.677
Q 2 0.738 0.691 0.673

J

The following table shows the expected returns for all three potential plays when three unsuited singletons are dealt. Generally, the preferred move is to eliminate the lowest card. Nevertheless, if all the cards are low and the two lowest are closely ranked while the highest is further apart, you might choose to chase a straight using the two lowest cards.

A

J K J
Q
J
J
J
J
J
J
J
J J 1.423 1.309 1.263
J A 1.429 1.186 1.155
K 10 1.431 1.092 1.074
Q 9 1.443 0.943 0.924
J 8 1.438 0.888 0.814
A 7 1.441 0.846 0.781
K 6 1.440 0.814 0.756
Q 5 1.443 0.856 0.733
J 4 1.440 0.835 0.712
A 3 1.431 0.809 0.690
K 2 1.420 0.773 0.669
Q J 1.272 1.186 1.099
A 10 1.273 1.091 1.028
K 9 1.288 0.940 0.890
Q 8 1.285 0.889 0.783
J 7 1.284 0.850 0.700
A 6 1.286 0.813 0.682
K 5 1.288 0.859 0.663
Q 4 1.284 0.834 0.642
J 3 1.279 0.811 0.622
A 2 1.271 0.777 0.607
K 10 1.154 1.091 1.017
Q 9 1.169 0.941 0.890
K 8 1.169 0.888 0.785
Q 7 1.169 0.850 0.697
J 6 1.169 0.819 0.626
Q 5 1.172 0.861 0.611
Q 4 1.170 0.838 0.591
Q 3 1.164 0.812 0.572
Q 2 1.156 0.778 0.558
Q 9 1.080 0.941 0.905
Q 8 1.080 0.888 0.809
Q 7 1.079 0.848 0.721
Q 6 1.082 0.818 0.643
Q 5 1.086 0.866 0.576
Q 4 1.083 0.838 0.558
J 3 1.078 0.811 0.542
A 2 1.072 0.778 0.528
J 8 0.915 0.880 0.805
K 7 0.916 0.842 0.741
J 6 0.917 0.811 0.666
Q 5 0.921 0.860 0.592
J 4 0.919 0.837 0.521
J 3 0.916 0.809 0.508
J 2 0.910 0.774 0.494
J 7 0.862 0.838 0.757
J 6 0.864 0.809 0.705
J 5 0.870 0.858 0.632
J 4 0.868 0.834 0.553
J 3 0.866 0.815 0.487
J 2 0.863 0.775 0.479
J 6 0.827 0.805 0.729
A 7 0.830 0.855 0.677
K 7 0.829 0.832 0.603
Q 3 0.828 0.811 0.523
J 2 0.827 0.782 0.463
A 6 0.798 0.857 0.710
K 6 0.796 0.835 0.652
Q 6 0.795 0.811 0.581
J 2 0.796 0.781 0.505
A 4 0.830 0.814 0.680
K 3 0.827 0.791 0.624
Q 2 0.827 0.762 0.554
J 3 0.804 0.789 0.591
A 2 0.803 0.760 0.537
K 2 0.782 0.758 0.508
Q J 1.166 1.093 1.081
A 10 1.165 1.013 1.011
K 9 1.183 0.869 0.873
Q 8 1.195 0.782 0.787
J 7 1.195 0.753 0.700
A 6 1.194 0.727 0.683
K 5 1.193 0.707 0.665
Q 4 1.190 0.685 0.644
J 3 1.185 0.665 0.625
A 2 1.180 0.647 0.610
K 10 1.065 1.013 1.002
Q 9 1.082 0.870 0.872
J 8 1.096 0.783 0.789
A 7 1.095 0.752 0.695
K 6 1.094 0.731 0.625
Q 5 1.095 0.707 0.611
J 4 1.093 0.686 0.592
A 3 1.089 0.666 0.575
K 2 1.083 0.646 0.559
Q 9 1.009 0.868 0.890
J 8 1.023 0.780 0.813
Three Suited Singletons 7 1.021 0.751 0.721
Three Suited Singletons 6 1.023 0.730 0.642
Hand 5 1.023 0.712 0.576
Discard 4 1.023 0.688 0.560
Expected 3 1.018 0.666 0.544
Return 2 1.013 0.646 0.530
Middle and High 8 0.857 0.778 0.810
Expected 7 0.856 0.747 0.740
Return 6 0.859 0.726 0.666
Low and High 5 0.860 0.709 0.593
Expected 4 0.857 0.687 0.523
Return 3 0.856 0.664 0.511
Low and Middle 2 0.851 0.645 0.499
A-K-Q Q 0.761 0.743 0.767
A-K-J 6 0.761 0.723 0.710
J 5 0.764 0.704 0.637
A-K-10 4 0.762 0.683 0.558
A-K-9 3 0.761 0.665 0.493
A-K-8 2 0.759 0.643 0.483
A-K-7 6 0.732 0.721 0.731
A-K-6 5 0.732 0.703 0.680
A-K-5 4 0.734 0.682 0.605
A-K-4 3 0.733 0.664 0.528
A-K-3 2 0.731 0.647 0.465
A-K-2 A-Q-J 0.708 0.698 0.712
J 4 0.708 0.679 0.653
A-Q-10 3 0.709 0.663 0.581
A-Q-9 2 0.711 0.646 0.506
A-Q-8 A-Q-7 0.690 0.676 0.701
A-Q-6 3 0.689 0.657 0.643
A-Q-5 2 0.689 0.641 0.572
A-Q-4 3 0.668 0.656 0.610
A-Q-3 2 0.667 0.639 0.555
A-Q-2 2 0.649 0.637 0.526
A-J-10 10 1.005 0.964 0.984
A-J-9 9 1.024 0.829 0.855
A-J-8 8 1.038 0.745 0.773
A-J-7 7 1.054 0.678 0.701
A-J-6 6 1.051 0.662 0.624
A-J-5 5 1.054 0.643 0.610
A-J-4 4 1.051 0.624 0.592
A-J-3 3 1.046 0.605 0.574
A-J-2 2 1.043 0.589 0.559
A-10-9 9 0.961 0.827 0.872
A-10-8 8 0.978 0.744 0.796
A-10-7 7 0.993 0.677 0.726
A-10-6 6 0.992 0.662 0.640
A-10-5 5 0.993 0.647 0.574
A-10-4 4 0.992 0.624 0.558
A-10-3 3 0.989 0.607 0.544
A-10-2 2 0.985 0.589 0.529
A-9-8 8 0.819 0.740 0.795
A-9-7 7 0.835 0.675 0.746
A-9-6 6 0.836 0.660 0.667
A-9-5 5 0.836 0.644 0.591
A-9-4 4 0.835 0.626 0.522
A-9-3 3 0.835 0.605 0.511
A-9-2 2 0.831 0.590 0.497
A-8-7 A-8-6 0.740 0.671 0.770
A-8-5 6 0.739 0.655 0.708
A-8-4 5 0.739 0.640 0.636
A-8-3 4 0.741 0.624 0.558
A-8-2 3 0.740 0.607 0.492
A-7-6 2 0.737 0.586 0.482
A-7-5 A-7-4 0.660 0.654 0.741
A-7-3 A-7-2 0.662 0.640 0.685
A-6-5 4 0.662 0.620 0.608
A-6-4 3 0.663 0.606 0.531
A-6-3 2 0.662 0.590 0.469
A-6-2 A-5-4 0.644 0.636 0.712
A-5-3 A-5-2 0.646 0.618 0.654
A-4-3 3 0.646 0.603 0.582
A-4-2 2 0.647 0.588 0.507
A-3-2 K-Q-J 0.628 0.616 0.700
J K-Q-10 0.628 0.598 0.645
K-Q-9 2 0.629 0.584 0.573
K-Q-8 K-Q-7 0.608 0.597 0.612
K-Q-6 2 0.608 0.582 0.556
K-Q-5 2 0.593 0.583 0.526
K-Q-4 9 0.943 0.815 0.857
K-Q-3 8 0.958 0.734 0.778
K-Q-2 7 0.975 0.667 0.710
K-J-10 6 0.992 0.610 0.648
K-J-9 5 0.992 0.597 0.574
K-J-8 4 0.988 0.575 0.557
K-J-7 3 0.987 0.559 0.541
K-J-6 2 0.984 0.545 0.528
K-J-5 8 0.812 0.734 0.778
K-J-4 7 0.828 0.665 0.730
K-J-3 6 0.843 0.607 0.671
K-J-2 5 0.842 0.596 0.591
K-10-9 4 0.844 0.579 0.521
K-10-8 3 0.841 0.559 0.508
K-10-7 2 0.839 0.544 0.496
K-10-6 K-10-5 0.734 0.663 0.756
K-10-4 6 0.750 0.605 0.715
K-10-3 5 0.750 0.594 0.635
K-10-2 4 0.749 0.577 0.556
K-9-8 3 0.750 0.562 0.492
K-9-7 2 0.749 0.545 0.482
K-9-6 K-9-5 0.664 0.602 0.746
K-9-4 K-9-3 0.662 0.590 0.684
K-9-2 4 0.667 0.575 0.607
K-8-7 3 0.667 0.560 0.530
K 2 0.666 0.548 0.468
K-8-6 K-8-5 0.595 0.590 0.721
K-8-4 K-8-3 0.596 0.574 0.658
K-8-2 3 0.597 0.559 0.586
K-7-6 2 0.598 0.545 0.510
K-7-5 K-7-4 0.581 0.569 0.701
K-7-3 K-7-2 0.584 0.556 0.646
K-6-5 2 0.585 0.543 0.574
K-6-4 K-6-3 0.565 0.555 0.613
K-6-2 2 0.565 0.542 0.556
K-5-4 2 0.549 0.540 0.526
K 8 0.821 0.746 0.762
K-5-3 7 0.836 0.678 0.712
K-5-2 6 0.854 0.615 0.655
K-4-3 5 0.868 0.563 0.594
K-4-2 4 0.866 0.548 0.520
K-3-2 3 0.867 0.529 0.507
Q-J-10 2 0.865 0.517 0.494
Q-J-9 7 0.749 0.677 0.739
Q-J-8 6 0.763 0.614 0.698
Q-J-7 5 0.780 0.561 0.642
Q-J-6 4 0.779 0.547 0.555
Q-J-5 3 0.780 0.534 0.489
Q-J-4 2 0.779 0.518 0.481
Q-J-3 10 0.681 0.612 0.730
Q-J-2 5 0.696 0.559 0.688
Q-10-9 4 0.696 0.546 0.606
Q-10-8 3 0.697 0.533 0.527
Q-10-7 2 0.697 0.522 0.466
Q-10-6 10 0.619 0.558 0.725
Q-10-5 10 0.616 0.543 0.657
Q-10-4 3 0.619 0.531 0.585
Q-10-3 2 0.619 0.520 0.508
Q-10-2 10 0.552 0.541 0.708
Q-9-8 10 0.553 0.527 0.649
Q-9-7 10 0.553 0.516 0.576
Q-9-6 10 0.538 0.528 0.612
Q-9-5 10 0.537 0.516 0.557
Q-9-4 10 0.525 0.516 0.528
Q-9-3 7 0.725 0.680 0.721
Q-9-2 6 0.741 0.622 0.679
Q-8-7 5 0.756 0.564 0.623
Q 4 0.773 0.508 0.559
Q-8-6 3 0.774 0.498 0.487
Q-8-5 2 0.772 0.483 0.477
Q-8-4 9 0.682 0.620 0.710
Q-8-3 5 0.698 0.562 0.670
Q-8-2 4 0.715 0.506 0.611
Q-7-6 3 0.716 0.497 0.526
Q 2 0.716 0.486 0.464
Q-7-5 9 0.626 0.560 0.709
Q 9 0.644 0.505 0.662
Q-7-4 3 0.643 0.495 0.583
Q-7-3 2 0.645 0.482 0.506
Q-7-2 9 0.568 0.502 0.711
Q-6-5 9 0.569 0.492 0.647
Q 9 0.572 0.483 0.575
Q-6-4 9 0.501 0.493 0.618
Q 9 0.501 0.483 0.561
Q-6-3 9 0.490 0.481 0.526
Q-6-2 8 0.692 0.650 0.694
Q-5-4 5 0.705 0.594 0.652
Q 4 0.725 0.530 0.593
Q-5-3 3 0.742 0.479 0.531
Q 2 0.739 0.471 0.461
Q-5-2 8 0.654 0.592 0.692
Q-4-3 4 0.672 0.528 0.644
Q-4-2 3 0.690 0.477 0.589
Q-3-2 2 0.690 0.469 0.503
J-10-9 8 0.601 0.527 0.695
J-10-8 8 0.618 0.476 0.652
J-10-7 2 0.618 0.468 0.572
J-10-6 8 0.540 0.476 0.623
J-10-5 8 0.539 0.470 0.559
J-10-4 8 0.474 0.469 0.534
J-10-3 7 0.667 0.625 0.674
J-10-2 4 0.685 0.565 0.627
J-9-8 3 0.704 0.504 0.571
J-9-7 2 0.719 0.455 0.510
J-9-6 7 0.632 0.562 0.678
J-9-5 3 0.650 0.501 0.635
J-9-4 2 0.668 0.452 0.579
J-9-3 7 0.576 0.502 0.607
J-9-2 2 0.592 0.454 0.563
J-8-7 7 0.517 0.456 0.539
J 6 0.651 0.598 0.662
J-8-6 3 0.669 0.541 0.616
J-8-5 2 0.685 0.482 0.561
J-8-4 3 0.611 0.543 0.588
J-8-3 2 0.629 0.483 0.546
J-8-2 2 0.558 0.486 0.522
J-7-6 3 0.640 0.588 0.566
J 2 0.658 0.533 0.521
J-7-5 2 0.602 0.535 0.498
J 2 0.572 0.519 0.500

Three Singletons — Lowest Two of the Same Suit

The upcoming table presents the expected returns for each of the three potential discards when you have three singletons, specifically when the two lowest cards match in suit. In 60.5% of situations, the optimal move is to retain the suited cards and throw away the highest-ranked one. In the remaining instances, you would discard the lowest card. The subsequent table illustrates the expected returns for all three possible selections among the three cards.

Three Singletons — Lowest Two of the Same Suit

J-7-4 J-7-3 J-7-2
J-6-5
J
J-6-4
J
J-6-3
J-6-2
J-5-4
J
J-5-3 J 1.404 1.296 1.480
J-5-2 J-4-3 1.407 1.175 1.379
J 10 1.408 1.082 1.304
J-4-2 9 1.421 0.936 1.168
J-3-2 8 1.419 0.884 1.068
10-9-8 7 1.419 0.840 1.037
10-9-7 6 1.419 0.808 1.015
10-9-6 5 1.421 0.853 0.995
10-9-5 4 1.416 0.829 0.976
10-9-4 3 1.409 0.805 0.953
10-9-3 2 1.396 0.770 0.934
10-9-2 10-8-7 1.255 1.175 1.317
10-8-6 10 1.257 1.081 1.255
10-8-5 9 1.269 0.933 1.129
10-8-4 8 1.268 0.884 1.030
10-8-3 7 1.268 0.845 0.953
10-8-2 6 1.269 0.809 0.939
10-7-6 5 1.271 0.856 0.923
10-7-5 4 1.269 0.833 0.904
10-7-4 3 1.262 0.809 0.886
10-7-3 2 1.252 0.773 0.868
10-7-2 10-6-5 1.140 1.082 1.238
10-6-4 9 1.156 0.936 1.122
10-6-3 8 1.155 0.883 1.024
10-6-2 7 1.157 0.845 0.945
10-5-4 6 1.154 0.814 0.879
10-5-3 5 1.160 0.857 0.866
10-5-2 4 1.156 0.833 0.848
10-4-3 3 1.150 0.809 0.831
10-4-2 2 1.143 0.775 0.818
10-3-2 9-8-7 1.068 0.935 1.131
9-8-6 8 1.070 0.881 1.041
9-8-5 7 1.067 0.843 0.962
9-8-4 6 1.069 0.812 0.888
9-8-3 5 1.074 0.861 0.824
9-8-2 4 1.071 0.834 0.811
9-7-6 3 1.068 0.809 0.796
9-7-5 2 1.061 0.775 0.782
9-7-4 9-7-3 0.904 0.875 1.034
9-7-2 9-6-5 0.906 0.836 0.975
9-6-4 6 0.908 0.807 0.905
9-6-3 5 0.912 0.856 0.838
9-6-2 4 0.911 0.834 0.773
9-5-4 3 0.906 0.805 0.760
9-5-3 2 0.902 0.772 0.751
9-5-2 9-4-3 0.855 0.835 0.987
9-4-2 9-3-2 0.856 0.805 0.939
8-7-6 8-7-5 0.862 0.853 0.873
8-7-4 4 0.862 0.832 0.799
8-7-3 3 0.857 0.810 0.734
8-7-2 2 0.854 0.772 0.726
8-6-5 8-6-4 0.820 0.802 0.958
8-6-3 8-6-2 0.821 0.849 0.908
8-5-4 8-5-3 0.821 0.828 0.839
8-5-2 3 0.821 0.807 0.764
8-4-3 2 0.819 0.778 0.705
8-4-2 8-3-2 0.791 0.853 0.937
7-6-5 7-6-4 0.789 0.827 0.880
7-6-3 7-6-2 0.789 0.807 0.814
7-5-4 2 0.790 0.779 0.742
7-5-3 7-5-2 0.824 0.810 0.906
7-4-3 7-4-2 0.822 0.787 0.849
7-3-2 2 0.823 0.760 0.784
6-5-4 6-5-3 0.799 0.786 0.818
6-5-2 2 0.801 0.758 0.764
6-4-3 2 0.778 0.753 0.735
6-4-2 6-3-2 1.148 1.082 1.300
5-4-3 5-4-2 1.148 1.005 1.238
5-3-2 9 1.164 0.862 1.114
4-3-2 8 1.177 0.776 1.032
Three Unsuited Singletons 7 1.175 0.748 0.953
Three Unsuited Singletons 6 1.178 0.723 0.938
Hand 5 1.177 0.705 0.923
Discard 4 1.171 0.680 0.906
Expected 3 1.171 0.664 0.885
Return 2 1.161 0.642 0.870
Middle and High Expected 1.054 1.005 1.223
Return Low and High 1.069 0.861 1.105
Expected 8 1.081 0.776 1.031
Return 7 1.084 0.749 0.944
Low and Middle 6 1.080 0.726 0.879
A-K-Q 5 1.083 0.705 0.867
Q 4 1.079 0.682 0.849
A-K-J 3 1.077 0.663 0.833
J 2 1.068 0.643 0.819
A-K-10 A-K-9 0.996 0.861 1.116
A-K-8 A-K-7 1.011 0.774 1.044
A-K-6 7 1.011 0.748 0.960
A-K-5 6 1.014 0.727 0.889
A-K-4 5 1.011 0.707 0.828
A-K-3 4 1.011 0.684 0.814
A-K-2 3 1.007 0.663 0.798
A-Q-J 2 1.001 0.643 0.783
J A-Q-10 0.846 0.769 1.038
A-Q-9 A-Q-8 0.849 0.744 0.976
A-Q-7 A-Q-6 0.849 0.722 0.907
A-Q-5 5 0.851 0.705 0.840
A-Q-4 4 0.848 0.683 0.775
A-Q-3 3 0.848 0.663 0.763
A-Q-2 2 0.844 0.643 0.751
A-J-10 A-J-9 0.751 0.737 0.994
A-J-8 A-J-7 0.752 0.716 0.943
A-J-6 A-J-5 0.756 0.698 0.877
A-J-4 A-J-3 0.757 0.682 0.803
A-J-2 3 0.753 0.662 0.741
A-10-9 2 0.749 0.639 0.732
A-10-8 A-10-7 0.725 0.717 0.961
A-10-6 A-10-5 0.727 0.699 0.911
A-10-4 A-10-3 0.727 0.680 0.840
A-10-2 A-9-8 0.728 0.662 0.768
A-9-7 2 0.727 0.645 0.709
A-9-6 A-9-5 0.704 0.695 0.940
A-9-4 A-9-3 0.703 0.676 0.883
A-9-2 A-8-7 0.703 0.659 0.815
A-8-6 A-8-5 0.703 0.641 0.745
A-8-4 A-8-3 0.683 0.671 0.925
A-8-2 A-7-6 0.684 0.653 0.868
A-7-5 A-7-4 0.683 0.636 0.801
A-7-3 A-7-2 0.664 0.651 0.837
A-6-5 A-6-4 0.663 0.635 0.782
A-6-3 A-6-2 0.645 0.633 0.750
A-5-4 A-5-3 0.994 0.956 1.205
A-5-2 A-4-3 1.011 0.822 1.089
A-4-2 8 1.026 0.738 1.013
A-3-2 7 1.041 0.674 0.948
K-Q-J 6 1.041 0.658 0.877
J 5 1.041 0.641 0.866
K-Q-10 4 1.039 0.621 0.850
K-Q-9 3 1.034 0.601 0.834
K-Q-8 2 1.030 0.585 0.818
K-Q-7 K-Q-6 0.953 0.822 1.101
K-Q-5 K-Q-4 0.965 0.737 1.029
K-Q-3 7 0.982 0.672 0.964
K-Q-2 6 0.981 0.658 0.886
K-J-10 5 0.982 0.645 0.825
K-J-9 4 0.980 0.619 0.813
K-J-8 3 0.977 0.603 0.796
K-J-7 2 0.974 0.586 0.781
K-J-6 K-J-5 0.812 0.737 1.027
K-J-4 K-J-3 0.826 0.669 0.980
K-J-2 K-10-9 0.826 0.655 0.906
K-10-8 K-10-7 0.827 0.640 0.838
K-10-6 4 0.828 0.622 0.774
K-10-5 3 0.827 0.603 0.763
K-10-4 2 0.823 0.587 0.750
K-10-3 K-10-2 0.729 0.665 0.999
K-9-8 K-9-7 0.732 0.651 0.943
K-9-6 K-9-5 0.732 0.637 0.873
K-9-4 K-9-3 0.733 0.620 0.803
K-9-2 K-8-7 0.734 0.605 0.741
K K-8-6 0.730 0.586 0.731
K-8-5 K-8-4 0.651 0.647 0.968
K-8-3 K-8-2 0.652 0.633 0.917
K-7-6 K-7-5 0.656 0.618 0.846
K-7-4 K-7-3 0.657 0.600 0.772
K-7-2 K-6-5 0.655 0.587 0.713
K K-6-4 0.639 0.633 0.938
K-6-3 K-6-2 0.638 0.615 0.882
K-5-4 K 0.640 0.599 0.816
K-5-3 K-5-2 0.641 0.585 0.747
K-4-3 K-4-2 0.624 0.612 0.927
K-3-2 Q-J-10 0.622 0.595 0.870
Q-J-9 Q-J-8 0.624 0.582 0.804
Q-J-7 Q-J-6 0.605 0.594 0.838
Q-J-5 Q-J-4 0.605 0.580 0.783
Q-J-3 Q-J-2 0.590 0.579 0.751
Q-10-9 Q-10-8 0.930 0.808 1.084
Q-10-7 Q-10-6 0.946 0.729 1.014
Q-10-5 7 0.964 0.660 0.951
Q-10-4 6 0.981 0.606 0.893
Q-10-3 5 0.979 0.594 0.827
Q-10-2 4 0.979 0.572 0.811
Q-9-8 3 0.975 0.554 0.795
Q-9-7 2 0.972 0.541 0.782
Q-9-6 Q-9-5 0.803 0.729 1.012
Q-9-4 Q-9-3 0.818 0.658 0.966
Q-9-2 Q-8-7 0.834 0.603 0.911
Q Q-8-6 0.833 0.592 0.838
Q-8-5 4 0.835 0.575 0.773
Q-8-4 3 0.833 0.556 0.760
Q-8-3 2 0.831 0.541 0.748
Q-8-2 Q-7-6 0.727 0.657 0.986
Q Q-7-5 0.743 0.602 0.948
Q Q-7-4 0.743 0.591 0.875
Q-7-3 Q-7-2 0.743 0.575 0.803
Q-6-5 3 0.742 0.558 0.738
Q 2 0.743 0.544 0.731
Q-6-4 Q 0.660 0.600 0.972
Q-6-3 Q-6-2 0.657 0.587 0.916
Q-5-4 Q 0.659 0.571 0.843
Q-5-3 Q 0.660 0.558 0.770
Q-5-2 Q-4-3 0.660 0.545 0.711
Q Q-4-2 0.588 0.584 0.946
Q-3-2 J-10-9 0.590 0.569 0.887
J-10-8 J-10-7 0.592 0.554 0.817
J-10-6 J-10-5 0.594 0.542 0.747
J-10-4 J-10-3 0.577 0.567 0.924
J-10-2 J-9-8 0.579 0.553 0.871
J-9-7 J-9-6 0.579 0.540 0.803
J-9-5 J-9-4 0.561 0.551 0.838
J-9-3 J-9-2 0.562 0.540 0.783
J-8-7 J 0.545 0.538 0.752
J-8-6 10 0.812 0.739 0.994
J-8-5 10 0.826 0.671 0.948
J-8-4 10 0.843 0.611 0.894
J-8-3 5 0.861 0.559 0.842
J-8-2 4 0.859 0.544 0.770
J-7-6 3 0.859 0.528 0.757
J 2 0.857 0.513 0.748
J-7-5 10 0.740 0.671 0.969
J 10 0.756 0.610 0.934
J-7-4 10 0.772 0.557 0.879
J-7-3 10 0.772 0.543 0.798
J-7-2 3 0.773 0.531 0.737
J-6-5 2 0.772 0.515 0.729
J 10 0.675 0.608 0.959
J-6-4 10 0.689 0.555 0.920
J 10 0.690 0.543 0.844
J-6-3 10 0.692 0.529 0.767
J-6-2 10 0.690 0.517 0.709
J-5-4 10 0.612 0.554 0.952
J 10 0.611 0.540 0.884
J-5-3 10 0.615 0.528 0.818
J 10 0.616 0.517 0.747
J-5-2 10 0.546 0.538 0.932
J-4-3 10 0.548 0.525 0.873
J 10 0.549 0.515 0.804
J-4-2 10 0.533 0.524 0.837
J-3-2 10 0.533 0.513 0.785
10-9-8 10 0.521 0.513 0.753
10-9-7 9 0.719 0.674 0.952
10-9-6 9 0.731 0.617 0.914
10-9-5 9 0.751 0.559 0.863
10-9-4 9 0.768 0.504 0.805
10-9-3 3 0.765 0.495 0.734
10-9-2 2 0.763 0.480 0.726
10-8-7 9 0.674 0.614 0.941
10-8-6 9 0.691 0.558 0.904
10-8-5 9 0.711 0.503 0.847
10-8-4 9 0.711 0.493 0.765
10-8-3 2 0.709 0.484 0.708
10-8-2 9 0.620 0.557 0.935
10-7-6 9 0.636 0.501 0.891
10-7-5 9 0.639 0.491 0.814
10-7-4 9 0.639 0.480 0.743
10-7-3 9 0.563 0.497 0.934
10-7-2 9 0.563 0.489 0.872
10-6-5 9 0.566 0.480 0.802
10-6-4 9 0.494 0.488 0.843
10-6-3 9 0.497 0.479 0.788
10-6-2 9 0.487 0.480 0.753
10-5-4 8 0.685 0.645 0.924
10-5-3 8 0.699 0.590 0.888
10-5-2 8 0.717 0.526 0.829
10-4-3 8 0.735 0.476 0.771
10-4-2 2 0.733 0.468 0.708
10-3-2 8 0.648 0.585 0.919
9-8-7 8 0.667 0.526 0.874
9-8-6 8 0.684 0.473 0.820
9-8-5 8 0.684 0.467 0.741
9-8-4 8 0.594 0.523 0.922
9-8-3 8 0.615 0.471 0.877
9-8-2 8 0.613 0.466 0.800
9-7-6 8 0.535 0.471 0.846
9-7-5 8 0.535 0.467 0.783
9-7-4 8 0.470 0.467 0.761
9-7-3 7 0.662 0.622 0.903
9-7-2 7 0.679 0.560 0.856
9-6-5 7 0.696 0.500 0.804
9-6-4 7 0.713 0.452 0.745
9-6-3 7 0.627 0.559 0.905
9-6-2 7 0.646 0.498 0.860
9-5-4 7 0.663 0.450 0.807
9-5-3 7 0.570 0.498 0.833
9-5-2 7 0.591 0.453 0.790
9-4-3 7 0.512 0.452 0.765
9-4-2 6 0.646 0.594 0.884
9-3-2 6 0.664 0.538 0.844
8-7-6 6 0.681 0.480 0.787
8-7-5 6 0.605 0.538 0.814
8-7-4 6 0.625 0.481 0.771
8-7-3 6 0.556 0.483 0.747
8-7-2 5 0.638 0.584 0.793
8-6-5 5 0.654 0.529 0.752
8-6-4 5 0.599 0.532 0.728
8-6-3 4 0.566 0.517 0.726

Three Singletons — Flanking Suited Cards

This table reveals the expected returns for the three possible plays when you are dealt three singletons, particularly when the lowest and highest ones are suited. In 74.1% of cases, the best choice is to keep the suited cards while discarding the middle one. The following table showcases the expected returns for the various ways to choose two out of the three cards.

Three Singletons — Flanking Suited Cards

8-6-2 8-5-4 8-5-3
8-5-2
8-4-3
8-4-2
8-3-2
7-6-5
7-6-4
7-6-3
7-6-2
7-5-4 7-5-3 1.400 1.533 1.256
7-5-2 7-4-3 1.405 1.417 1.146
7-4-2 10 1.404 1.332 1.065
7-3-2 9 1.419 1.196 0.918
6-5-4 8 1.415 1.147 0.810
6-5-3 7 1.418 1.109 0.778
6-5-2 6 1.416 1.080 0.749
6-4-3 5 1.417 1.119 0.729
6-4-2 4 1.413 1.098 0.706
6-3-2 3 1.405 1.078 0.686
5-4-3 2 1.397 1.045 0.666
5-4-2 5-3-2 1.244 1.416 1.088
4-3-2 Hand 1.250 1.329 1.021
Discard 9 1.263 1.194 0.885
Expected 8 1.260 1.144 0.778
Return 7 1.260 1.111 0.696
Middle and High 6 1.260 1.078 0.678
Expected 5 1.263 1.124 0.660
Return 4 1.260 1.103 0.641
Low and High 3 1.253 1.081 0.620
Expected 2 1.248 1.048 0.605
Return Low and Middle 1.133 1.331 1.011
A-K-Q A 1.147 1.195 0.884
A-K-J J 1.145 1.147 0.780
A-K-10 7 1.144 1.112 0.694
A-K-9 6 1.144 1.084 0.623
A-K-8 5 1.146 1.125 0.606
A-K-7 4 1.144 1.103 0.587
A-K-6 3 1.139 1.082 0.572
A-K-5 2 1.134 1.050 0.557
A-K-4 10 1.055 1.194 0.899
A-K-3 10 1.057 1.149 0.802
A-K-2 10 1.054 1.109 0.718
A-Q-J 10 1.059 1.083 0.641
A 10 1.063 1.131 0.572
A-Q-10 10 1.057 1.102 0.554
A-Q-9 10 1.055 1.081 0.541
A-Q-8 10 1.048 1.049 0.525
A-Q-7 9 0.891 1.138 0.799
A-Q-6 9 0.892 1.103 0.737
A-Q-5 9 0.894 1.076 0.663
A-Q-4 9 0.900 1.124 0.590
A-Q-3 9 0.895 1.104 0.518
A-Q-2 9 0.891 1.075 0.504
A-J-10 9 0.890 1.046 0.495
A 8 0.839 1.102 0.751
A-J-9 8 0.842 1.075 0.702
A-J-8 8 0.843 1.119 0.630
A-J-7 8 0.844 1.101 0.550
A-J-6 8 0.844 1.083 0.485
A-J-5 8 0.839 1.048 0.475
A-J-4 7 0.802 1.070 0.726
A-J-3 7 0.805 1.117 0.673
A-J-2 7 0.807 1.099 0.600
A-10-9 7 0.806 1.081 0.520
A 7 0.805 1.054 0.461
A-10-8 6 0.775 1.120 0.707
A-10-7 6 0.774 1.102 0.649
A-10-6 6 0.773 1.080 0.578
A-10-5 6 0.773 1.055 0.502
A-10-4 5 0.805 1.078 0.678
A-10-3 5 0.807 1.061 0.622
A-10-2 5 0.805 1.034 0.553
A-9-8 4 0.782 1.059 0.588
A 4 0.782 1.033 0.533
A-9-7 3 0.760 1.030 0.504
A A-9-6 1.144 1.318 1.073
A-9-5 A-9-4 1.147 1.249 1.006
A-9-3 9 1.162 1.116 0.867
A-9-2 8 1.175 1.038 0.783
A-8-7 7 1.171 1.009 0.694
A 6 1.173 0.985 0.679
A-8-6 5 1.172 0.969 0.661
A 4 1.172 0.951 0.643
A-8-5 3 1.166 0.935 0.623
A 2 1.159 0.914 0.607
A-8-4 A-8-3 1.047 1.246 0.994
A-8-2 A-7-6 1.063 1.115 0.865
A 8 1.078 1.037 0.783
A-7-5 7 1.075 1.008 0.691
A 6 1.076 0.991 0.622
A-7-4 5 1.078 0.973 0.608
A 4 1.073 0.952 0.589
A-7-3 3 1.069 0.935 0.571
A-7-2 2 1.061 0.914 0.556
A-6-5 10 0.988 1.112 0.882
A 10 1.002 1.035 0.808
A-6-4 10 1.003 1.008 0.715
A 6 1.005 0.991 0.638
A-6-3 5 1.005 0.977 0.574
A 4 1.003 0.952 0.557
A-6-2 3 0.998 0.934 0.541
A-5-4 2 0.994 0.917 0.527
A 9 0.838 1.032 0.805
A-5-3 9 0.838 1.005 0.737
A 9 0.841 0.986 0.664
A-5-2 9 0.842 0.974 0.591
A-4-3 9 0.841 0.954 0.522
A 9 0.838 0.933 0.508
A-4-2 9 0.831 0.913 0.496
A-3-2 8 0.743 1.001 0.763
K-Q-J 8 0.742 0.981 0.705
K 8 0.744 0.968 0.635
K-Q-10 8 0.745 0.949 0.556
K 8 0.745 0.937 0.491
K-Q-9 8 0.741 0.912 0.481
K-Q-8 7 0.714 0.983 0.729
K-Q-7 7 0.714 0.964 0.677
K-Q-6 7 0.715 0.950 0.603
K-Q-5 7 0.716 0.933 0.526
K-Q-4 7 0.714 0.917 0.463
K-Q-3 6 0.690 0.964 0.709
K-Q-2 6 0.692 0.947 0.650
K-J-10 6 0.692 0.928 0.580
K 6 0.693 0.913 0.505
K-J-9 5 0.670 0.942 0.695
K 5 0.672 0.927 0.641
K-J-8 5 0.672 0.909 0.570
K-J-7 4 0.653 0.926 0.609
K-J-6 4 0.652 0.908 0.553
K-J-5 3 0.632 0.906 0.524
K-J-4 K-J-3 0.991 1.193 0.974
K-J-2 K-10-9 1.009 1.069 0.849
K 8 1.023 0.993 0.766
K-10-8 7 1.038 0.933 0.697
K 6 1.037 0.920 0.622
K-10-7 5 1.037 0.902 0.607
K-10-6 4 1.036 0.885 0.589
K-10-5 3 1.035 0.872 0.572
K-10-4 2 1.026 0.851 0.555
K-10-3 10 0.945 1.067 0.865
K-10-2 10 0.965 0.991 0.792
K-9-8 7 0.978 0.933 0.721
K 6 0.976 0.920 0.637
K-9-7 5 0.977 0.904 0.572
K 4 0.976 0.884 0.554
K-9-6 3 0.975 0.868 0.540
K 2 0.971 0.854 0.527
K-9-5 9 0.807 0.989 0.790
K-9-4 9 0.821 0.929 0.742
K-9-3 9 0.820 0.915 0.662
K-9-2 9 0.820 0.903 0.587
K-8-7 9 0.821 0.888 0.518
K 9 0.824 0.870 0.509
K-8-6 9 0.817 0.852 0.494
K 8 0.723 0.925 0.766
K-8-5 8 0.724 0.912 0.704
K 8 0.724 0.901 0.633
K-8-4 8 0.726 0.884 0.555
K 8 0.726 0.869 0.490
K-8-3 8 0.725 0.853 0.482
K-8-2 7 0.645 0.910 0.736
K-7-6 7 0.646 0.897 0.681
K 7 0.647 0.884 0.604
K-7-5 7 0.649 0.868 0.528
K 7 0.647 0.854 0.465
K-7-4 6 0.630 0.898 0.710
K 6 0.629 0.880 0.650
K-7-3 6 0.631 0.865 0.581
K 6 0.634 0.853 0.505
K-7-2 5 0.613 0.877 0.697
K-6-5 5 0.613 0.863 0.642
K 5 0.614 0.850 0.571
K-6-4 4 0.596 0.863 0.610
K 4 0.595 0.848 0.554
K-6-3 3 0.580 0.847 0.525
K 10 0.930 1.051 0.850
K-6-2 10 0.946 0.977 0.774
K 7 0.964 0.915 0.707
K-5-4 6 0.979 0.863 0.643
K 5 0.980 0.853 0.571
K-5-3 4 0.978 0.834 0.555
K 3 0.975 0.817 0.539
K-5-2 2 0.972 0.804 0.526
K 9 0.797 0.976 0.772
K-4-3 9 0.814 0.913 0.725
K 9 0.831 0.863 0.669
K-4-2 9 0.831 0.851 0.587
K 9 0.832 0.835 0.518
K-3-2 3 0.828 0.819 0.505
K 2 0.827 0.804 0.493
Q-J-10 8 0.721 0.910 0.750
Q 8 0.738 0.860 0.713
Q-J-9 8 0.737 0.847 0.633
Q 8 0.739 0.836 0.554
Q-J-8 8 0.740 0.819 0.488
Q-J-7 8 0.739 0.808 0.479
Q-J-6 7 0.653 0.858 0.742
Q-J-5 7 0.652 0.847 0.680
Q-J-4 7 0.653 0.833 0.604
Q-J-3 7 0.655 0.819 0.528
Q-J-2 7 0.654 0.808 0.466
Q-10-9 6 0.583 0.845 0.716
Q 6 0.585 0.830 0.656
Q-10-8 6 0.587 0.819 0.584
Q 6 0.586 0.807 0.507
Q-10-7 5 0.571 0.829 0.698
Q-10-6 5 0.572 0.816 0.641
Q-10-5 5 0.573 0.803 0.571
Q-10-4 4 0.553 0.815 0.609
Q-10-3 4 0.554 0.803 0.554
Q-10-2 3 0.538 0.801 0.524
Q-9-8 9 0.810 0.981 0.756
Q 9 0.824 0.916 0.706
Q-9-7 9 0.842 0.861 0.649
Q 5 0.859 0.815 0.592
Q-9-6 4 0.856 0.802 0.515
Q 3 0.858 0.785 0.504
Q-9-5 2 0.854 0.773 0.491
Q 8 0.737 0.918 0.732
Q-9-4 8 0.752 0.860 0.694
Q-9-3 8 0.770 0.815 0.639
Q-9-2 8 0.769 0.801 0.553
Q-8-7 8 0.770 0.788 0.485
Q 8 0.769 0.773 0.477
Q-8-6 7 0.670 0.859 0.727
Q 7 0.686 0.811 0.683
Q-8-5 7 0.687 0.800 0.602
Q 7 0.688 0.790 0.525
Q-8-4 7 0.688 0.777 0.465
Q 6 0.609 0.813 0.722
Q-8-3 6 0.608 0.801 0.653
Q 6 0.609 0.787 0.581
Q-8-2 6 0.611 0.776 0.508
Q 5 0.541 0.795 0.705
Q-7-6 5 0.543 0.783 0.645
Q 5 0.545 0.773 0.575
Q-7-5 4 0.528 0.783 0.609
Q 4 0.530 0.773 0.555
Q-7-4 3 0.516 0.774 0.525
Q 8 0.717 0.918 0.715
Q-7-3 8 0.732 0.864 0.674
Q 8 0.748 0.810 0.619
Q-7-2 4 0.765 0.759 0.556
Q 3 0.763 0.751 0.484
Q-6-5 2 0.764 0.736 0.476
Q 7 0.674 0.862 0.707
Q-6-4 7 0.690 0.808 0.666
Q 7 0.707 0.759 0.607
Q-6-3 7 0.708 0.749 0.523
Q 7 0.706 0.737 0.462
Q-6-2 6 0.618 0.808 0.706
Q 6 0.635 0.756 0.657
Q-5-4 6 0.636 0.748 0.578
Q 6 0.637 0.738 0.504
Q-5-3 5 0.562 0.756 0.710
Q 5 0.560 0.749 0.642
Q-5-2 5 0.562 0.735 0.572
Q 4 0.491 0.746 0.616
Q-4-3 4 0.494 0.738 0.557
Q 3 0.482 0.738 0.524
Q-4-2 7 0.685 0.886 0.688
Q 7 0.700 0.835 0.648
Q-3-2 7 0.717 0.777 0.588
Q 3 0.736 0.728 0.530
J-10-9 2 0.735 0.722 0.463
J 6 0.649 0.834 0.687
J-10-8 6 0.666 0.775 0.640
J 6 0.682 0.725 0.584
J-10-7 6 0.682 0.719 0.501
J-10-6 5 0.593 0.772 0.692
J-10-5 5 0.611 0.724 0.648
J-10-4 5 0.612 0.717 0.570
J-10-3 4 0.534 0.727 0.619
J-10-2 4 0.532 0.719 0.557
J-9-8 3 0.468 0.719 0.531
J 6 0.662 0.860 0.669
J-9-7 6 0.679 0.803 0.621
J 6 0.698 0.745 0.567
J-9-6 2 0.712 0.700 0.505
J 5 0.626 0.800 0.675
J-9-5 5 0.646 0.742 0.631
J 5 0.663 0.697 0.576
J-9-4 4 0.571 0.746 0.603
J-9-3 4 0.589 0.699 0.561
J-9-2 3 0.510 0.701 0.536
J-8-7 5 0.645 0.829 0.656
J 5 0.662 0.776 0.612
J-8-6 5 0.681 0.721 0.557
J 4 0.605 0.778 0.587
J-8-5 4 0.623 0.722 0.543
J 3 0.553 0.723 0.518
J-8-4 4 0.635 0.816 0.562
J 4 0.654 0.762 0.519
J-8-3 3 0.597 0.764 0.495
J-8-2 3 0.567 0.748 0.494

Three Singletons — Two Highest Cards of the Same Suit

The subsequent table demonstrates the expected returns for all three potential actions when you hold three singletons, given that the lowest two are suited. In every instance, it is optimal to maintain the suited cards and dispose of the lowest. The remaining situation involves discarding the lowest card. The following table illustrates the expected return for all three selections among the three cards.

Three Singletons — Two Highest Cards of the Same Suit

J-7-6 J J-7-5
J
J-7-4
J
J-7-3
J
J-7-2
J
J-6-5
J J-6-4 1.632 1.286 1.252
J J-6-3 1.638 1.162 1.143
J 10 1.638 1.066 1.060
J-6-2 9 1.651 0.920 0.912
J 8 1.646 0.865 0.803
J-5-4 7 1.651 0.823 0.769
J 6 1.645 0.789 0.743
J-5-3 5 1.652 0.837 0.720
J 4 1.646 0.810 0.699
J-5-2 3 1.636 0.784 0.678
J 2 1.629 0.752 0.657
J-4-3 J 1.493 1.160 1.088
J-4-2 10 1.498 1.067 1.019
J 9 1.512 0.921 0.881
J-3-2 8 1.506 0.865 0.773
J 7 1.506 0.827 0.691
10-9-8 6 1.506 0.791 0.674
10-9-7 5 1.510 0.837 0.654
10-9-6 4 1.507 0.812 0.633
10-9-5 3 1.499 0.786 0.613
10-9-4 2 1.491 0.753 0.597
10-9-3 10 1.387 1.066 1.009
10-9-2 9 1.402 0.919 0.882
10-8-7 8 1.400 0.864 0.777
10-8-6 7 1.401 0.827 0.689
10-8-5 6 1.399 0.796 0.617
10-8-4 5 1.404 0.839 0.603
10-8-3 4 1.401 0.813 0.585
10-8-2 3 1.395 0.790 0.567
10-7-6 2 1.388 0.754 0.550
10-7-5 9 1.321 0.920 0.900
10-7-4 8 1.321 0.865 0.799
10-7-3 7 1.320 0.826 0.716
10-7-2 6 1.322 0.795 0.635
10-6-5 5 1.326 0.842 0.570
10-6-4 4 1.324 0.816 0.552
10-6-3 3 1.318 0.791 0.536
10-6-2 2 1.315 0.757 0.523
10-5-4 8 1.168 0.856 0.799
10-5-3 7 1.171 0.819 0.736
10-5-2 6 1.170 0.787 0.660
10-4-3 5 1.174 0.835 0.584
10-4-2 4 1.174 0.815 0.517
10-3-2 3 1.170 0.786 0.505
9-8-7 2 1.164 0.752 0.489
9-8-6 7 1.123 0.816 0.753
9-8-5 6 1.122 0.786 0.700
9-8-4 5 1.126 0.835 0.628
9-8-3 4 1.127 0.812 0.549
9-8-2 3 1.123 0.791 0.483
9-7-6 2 1.118 0.752 0.474
9-7-5 6 1.087 0.783 0.726
9-7-4 5 1.091 0.831 0.672
9-7-3 4 1.091 0.809 0.599
9-7-2 3 1.090 0.788 0.520
9-6-5 2 1.088 0.758 0.458
9-6-4 5 1.063 0.834 0.707
9-6-3 4 1.064 0.812 0.649
9-6-2 3 1.063 0.789 0.576
9-5-4 2 1.062 0.761 0.502
9-5-3 4 1.090 0.789 0.677
9-5-2 3 1.094 0.771 0.622
9-4-3 2 1.091 0.738 0.552
9-4-2 3 1.072 0.768 0.589
9-3-2 2 1.069 0.735 0.532
8-7-6 2 1.050 0.736 0.504
8-7-5 8-7-4 1.384 1.072 1.071
8-7-3 10 1.387 0.995 1.002
8-7-2 9 1.398 0.849 0.862
8-6-5 8 1.414 0.764 0.779
8-6-4 7 1.412 0.733 0.689
8-6-3 6 1.414 0.709 0.672
8-6-2 5 1.411 0.689 0.655
8-5-4 4 1.408 0.668 0.635
8-5-3 3 1.402 0.647 0.617
8-5-2 2 1.393 0.625 0.599
8-4-3 10 1.291 0.992 0.991
8-4-2 9 1.311 0.849 0.864
8-3-2 8 1.323 0.765 0.783
7-6-5 7 1.323 0.735 0.688
7-6-4 6 1.321 0.712 0.619
7-6-3 5 1.322 0.689 0.604
7-6-2 4 1.322 0.669 0.587
7-5-4 3 1.316 0.649 0.569
7-5-3 2 1.309 0.629 0.552
7-5-2 9 1.242 0.850 0.885
7-4-3 8 1.258 0.762 0.806
7-4-2 7 1.258 0.734 0.714
7-3-2 6 1.258 0.713 0.637
6-5-4 5 1.254 0.691 0.570
6-5-3 4 1.254 0.670 0.553
6-5-2 3 1.252 0.649 0.538
6-4-3 2 1.246 0.629 0.522
6-4-2 8 1.104 0.758 0.805
6-3-2 7 1.104 0.730 0.736
5-4-3 6 1.106 0.707 0.662
5-4-2 5 1.107 0.688 0.586
5-3-2 4 1.105 0.670 0.519
4-3-2 3 1.103 0.647 0.504
Hand 2 1.097 0.627 0.494
Discard 7 1.016 0.726 0.762
Expected 6 1.016 0.701 0.706
Return 5 1.019 0.686 0.633
Middle and High 4 1.019 0.666 0.555
Expected 3 1.017 0.647 0.488
Return 2 1.013 0.624 0.478
Low and High 6 0.992 0.702 0.727
Expected 5 0.993 0.685 0.679
Return 4 0.992 0.664 0.601
Low and Middle 3 0.993 0.647 0.524
A-K-Q 2 0.992 0.631 0.464
K 5 0.970 0.681 0.710
A-K-J 4 0.970 0.662 0.649
K 3 0.970 0.643 0.577
A-K-10 2 0.972 0.627 0.503
A-K-9 4 0.954 0.658 0.697
A-K-8 3 0.951 0.641 0.642
A-K-7 2 0.953 0.623 0.571
A-K-6 3 0.935 0.638 0.610
A-K-5 2 0.934 0.621 0.553
A-K-4 2 0.916 0.620 0.523
A-K-3 10 1.228 0.948 0.974
A-K-2 9 1.245 0.814 0.846
A-Q-J 8 1.262 0.732 0.765
Q 7 1.273 0.662 0.692
A-Q-10 6 1.274 0.648 0.618
Q 5 1.275 0.628 0.602
A-Q-9 4 1.274 0.608 0.584
A-Q-8 3 1.269 0.591 0.567
A-Q-7 2 1.265 0.573 0.550
A-Q-6 9 1.192 0.814 0.867
A-Q-5 8 1.204 0.730 0.788
A-Q-4 7 1.224 0.665 0.720
A-Q-3 6 1.219 0.648 0.633
A-Q-2 5 1.221 0.631 0.568
A-J-10 4 1.219 0.608 0.551
J 3 1.216 0.590 0.537
A-J-9 2 1.213 0.576 0.523
J 8 1.062 0.724 0.789
A-J-8 7 1.076 0.658 0.739
J 6 1.078 0.645 0.661
A-J-7 5 1.077 0.630 0.587
A-J-6 4 1.078 0.611 0.517
A-J-5 3 1.074 0.590 0.504
A-J-4 2 1.072 0.573 0.491
A-J-3 7 0.986 0.655 0.766
A-J-2 6 0.988 0.641 0.705
A-10-9 5 0.987 0.626 0.632
A-10-8 4 0.991 0.610 0.555
A-10-7 3 0.990 0.593 0.488
A-10-6 2 0.986 0.574 0.478
A-10-5 6 0.916 0.639 0.736
A-10-4 5 0.916 0.625 0.681
A-10-3 4 0.917 0.605 0.604
A-10-2 3 0.916 0.589 0.526
A-9-8 2 0.916 0.574 0.465
A-9-7 5 0.902 0.625 0.710
A-9-6 4 0.902 0.604 0.651
A-9-5 3 0.903 0.589 0.579
A-9-4 2 0.904 0.573 0.504
A-9-3 4 0.887 0.599 0.698
A-9-2 3 0.885 0.583 0.643
A-8-7 2 0.889 0.571 0.573
A-8-6 3 0.872 0.584 0.608
A-8-5 2 0.870 0.568 0.555
A-8-4 2 0.855 0.568 0.525
A-8-3 9 1.165 0.803 0.850
A-8-2 8 1.183 0.723 0.773
A-7-6 7 1.197 0.654 0.704
A-7-5 6 1.214 0.599 0.641
A-7-4 5 1.213 0.585 0.566
A-7-3 4 1.210 0.564 0.551
A-7-2 3 1.209 0.547 0.535
A-6-5 2 1.206 0.533 0.521
A-6-4 8 1.046 0.721 0.772
A-6-3 7 1.062 0.650 0.725
A-6-2 6 1.077 0.596 0.666
A-5-4 5 1.078 0.585 0.586
A-5-3 4 1.075 0.566 0.516
A-5-2 3 1.077 0.548 0.504
A-4-3 2 1.075 0.534 0.491
A-4-2 7 0.976 0.650 0.753
A-3-2 6 0.992 0.593 0.710
K-Q-J 5 0.990 0.581 0.632
Q 4 0.994 0.566 0.553
K-Q-10 3 0.990 0.549 0.485
Q 2 0.989 0.533 0.476
K-Q-9 6 0.914 0.591 0.740
K-Q-8 5 0.914 0.581 0.681
K-Q-7 4 0.916 0.563 0.603
K-Q-6 3 0.915 0.548 0.526
K-Q-5 2 0.915 0.536 0.465
K-Q-4 5 0.848 0.577 0.716
K-Q-3 4 0.851 0.562 0.655
K-Q-2 3 0.850 0.546 0.582
K-J-10 2 0.853 0.534 0.507
J 4 0.839 0.559 0.698
K-J-9 3 0.839 0.541 0.641
J 2 0.840 0.531 0.572
K-J-8 3 0.822 0.542 0.609
K-J-7 2 0.823 0.530 0.555
K-J-6 2 0.810 0.530 0.524
K-J-5 8 1.050 0.735 0.756
K-J-4 7 1.066 0.667 0.706
K-J-3 6 1.083 0.604 0.649
K-J-2 5 1.099 0.553 0.592
K-10-9 4 1.096 0.538 0.513
K-10-8 3 1.097 0.521 0.501
K-10-7 2 1.093 0.508 0.488
K-10-6 7 0.983 0.665 0.733
K-10-5 6 0.999 0.604 0.693
K-10-4 5 1.016 0.553 0.638
K-10-3 4 1.014 0.538 0.549
K-10-2 3 1.016 0.524 0.486
K-9-8 2 1.014 0.507 0.474
K-9-7 6 0.922 0.602 0.724
K-9-6 5 0.937 0.551 0.685
K-9-5 4 0.937 0.536 0.599
K-9-4 3 0.937 0.523 0.523
K-9-3 2 0.939 0.511 0.462
K-9-2 5 0.866 0.549 0.721
K-8-7 4 0.864 0.533 0.653
K-8-6 3 0.866 0.520 0.581
K-8-5 2 0.868 0.510 0.505
K-8-4 4 0.803 0.531 0.705
K-8-3 3 0.804 0.519 0.645
K-8-2 2 0.807 0.508 0.575
K-7-6 3 0.792 0.518 0.609
K-7-5 2 0.794 0.506 0.555
K-7-4 2 0.779 0.506 0.525
K-7-3 7 0.959 0.671 0.715
K-7-2 6 0.975 0.614 0.673
K-6-5 5 0.990 0.556 0.619
K-6-4 4 1.006 0.500 0.554
K-6-3 3 1.006 0.488 0.481
K-6-2 2 1.003 0.474 0.471
K-5-4 6 0.918 0.611 0.707
K-5-3 5 0.937 0.554 0.668
K-5-2 4 0.951 0.497 0.605
K-4-3 3 0.953 0.486 0.520
K-4-2 2 0.952 0.478 0.458
K-3-2 5 0.869 0.553 0.704
Q-J-10 4 0.883 0.497 0.656
J 3 0.886 0.486 0.578
Q-J-9 2 0.887 0.475 0.503
J 4 0.817 0.495 0.707
Q-J-8 3 0.817 0.485 0.645
Q-J-7 2 0.818 0.472 0.571
Q-J-6 3 0.754 0.485 0.616
Q-J-5 2 0.755 0.476 0.556
Q-J-4 2 0.744 0.476 0.524
Q-J-3 6 0.927 0.643 0.690
Q-J-2 5 0.941 0.587 0.649
Q-10-9 4 0.957 0.525 0.589
Q-10-8 3 0.973 0.472 0.525
Q-10-7 2 0.973 0.464 0.456
Q-10-6 5 0.892 0.587 0.688
Q-10-5 4 0.907 0.522 0.639
Q-10-4 3 0.923 0.468 0.582
Q-10-3 2 0.925 0.463 0.502
Q-10-2 4 0.841 0.520 0.692
Q-9-8 3 0.859 0.467 0.647
Q-9-7 2 0.860 0.462 0.569
Q-9-6 3 0.786 0.468 0.621
Q-9-5 2 0.787 0.463 0.556
Q-9-4 2 0.724 0.463 0.531
Q-9-3 5 0.899 0.618 0.668
Q-9-2 4 0.915 0.559 0.622
Q-8-7 3 0.933 0.498 0.565
Q-8-6 2 0.947 0.449 0.505
Q-8-5 4 0.868 0.557 0.675
Q-8-4 3 0.885 0.493 0.630
Q-8-3 2 0.902 0.447 0.574
Q-8-2 3 0.814 0.495 0.603
Q-7-6 2 0.831 0.449 0.561
Q-7-5 2 0.758 0.448 0.533
Q-7-4 4 0.881 0.591 0.658
Q-7-3 3 0.897 0.536 0.611
Q-7-2 2 0.916 0.477 0.557
Q-6-5 3 0.841 0.537 0.585
Q-6-4 2 0.860 0.479 0.543
Q-6-3 2 0.793 0.480 0.518
Q-6-2 3 0.866 0.582 0.562
Q-5-4 2 0.884 0.528 0.519
Q-5-3 2 0.829 0.530 0.497

Q-5-2 Q-4-3

J-10-9
Players have given ACR Casino a rating of 3.2 out of 5 stars.

J-10-8

J-10-7
$2000

New Customer Offer. Terms and conditions apply. Must be 18 years or older. Note that this offer is unavailable for residents of Ontario. New customers only. Terms and conditions apply. Must be 19 years or older. Please gamble responsibly. The bonus will not be instantly awarded upon deposit; you will need to engage in real money poker first to qualify. Bonuses will be earned in increments of $1 as you play. Minimum deposit: $25. For further information regarding wagering requirements, please contact customer support at the Casino.
J-10-6
J-10-3
Players have rated Bovada Casino at 3.8 out of 5 stars.

J-10-2

J-9-8

J-9-6

J-9-5
$500

Exclusively for new customers. Terms and conditions apply. Participants must be 18 years or older. Your Poker Welcome Bonus will be accessible in increments of $5 for every 150 Rewards Points accumulated in Poker. Points are credited once you leave a cash game table or complete a Poker Tournament. There is no rollover requirement for unlocked Welcome Bonus funds.
J-9-4
J-8-7
Players have assigned Klondaika.lv Casino a rating of 2.8 out of 5 stars.

J-8-6

J-8-5
J-8-4

Special promotional offer for new customers; terms and conditions apply. Participants must be at least 18 years old, with a minimum deposit of €10 required. Players need to register a Poker Alias to activate the welcome bonus. For every 100 Status Points earned, players will receive €1 in real cash, with 10 Status Points accrued for each €1 in rake or fees at real money tables.
J-8-3
J-7-5
Players rated Guts Casino with 4 out of 5 stars.

J-7-4

J-7-3
J-7-2

This promotional offer is not applicable for individuals residing in Ontario. New Customer Offer. Terms and conditions apply. Must be at least 19 years old. This offer is exclusive to new players. There is no wagering requirement for bonus funds. For every €25 in rake you accumulate, you will receive €5 in bonus funds. Your poker bonus will be distributed in increments of €5.
J-6-5
J-6-2
Players rated TigerGaming Casino at 3.1 out of 5 stars.

J-5-4

J-5-3

J-4-3

J-4-2
$1000

New Customer Offer. Terms and conditions apply. Must be 18 years or older. This offer is not available for Ontario residents. New customers only. Terms and conditions apply. Minimum deposit: $50. Bonuses will be unlocked in increments of $5. Each time you generate $50 in rake, an increment of $5 from your bonus will be activated until you’ve unlocked the full amount.
J-3-2
10-9-6
Players have given BetOnline Casino a score of 3.1 out of 5 stars.

10-9-5

10-9-4

10-9-2

10-8-7
$1000

New Customer Offer. Terms and conditions apply. Must be 18 years or older. This offer is not available for players in Ontario. New Customer Offer. Terms and conditions apply. Minimum deposit: $50. The bonus will be released in increments of $5. Each time you rake $50, $5 of your bonus will be unlocked until the total bonus amount is released.

10-8-6

10-8-4

The tables below detail my power ratings for all possible hands a player might utilize, based on the assumption that they always maintain the two cards with the highest expected value, as outlined in the preceding tables. Certain combinations will never be played, such as unsuited K-6, where the discard is suited with either the K or 6. I adjusted the expected values upwards by 36.9 so that the highest possible hand, A-A with a non-ace discard, carries a value of 100. Of course, actual power ratings will vary slightly depending on the rank of the discarded card, so the values presented here represent a weighted average.

The upcoming table shows the power rating associated with holding a pair. The columns are organized based on whether there is a rank penalty (a scenario where you are dealt a three of a kind), a suit penalty (a singleton matching a card in the pair, hindering flush potential), or no penalty card at all.

10-8-3

The following table outlines the power ratings for any pairing of two suited cards, where the card being discarded shares the same suit, reflecting a three-card flush situation.

10-8-2

This table presents the power ratings for various combinations of two suited cards when the discarded card belongs to a different suit.

Suited Singletons without Suit Penalty

The next table displays the power ratings for combinations of two off-suit cards where the discard is suited to one of the cards, diminishing the chance of achieving a flush.

Unsuitable Singletons with Suit Penalty

In the following table, you'll find the power ratings for any combination of two off-suit cards during which the discarded card belongs to a different suit than both, often described as a 'rainbow'—to indicate three different suits.

Unsuitable Singletons without Suit Penalty

10-7-6

The expected values and strategies outlined on this page emerged from a random simulation methodology. To establish the strategies, I initially crafted a fundamental approach for playing against five 'psychic' opponents—who always play the two cards that maximize the value of the final hand. I then had all five opponents adopt this anti-psychic strategy and developed a revised optimal approach to counter it. This process was repeated four more times, ultimately seeking a Nash equilibrium that could not be enhanced further. The final statistics resulted from a simulation encompassing 6,610,500,000 rounds.