Making the decision to switch is often complex. However, most scenarios will clarify this choice. The subsequent tables are designed to help determine whether a switch is advantageous in various situations according to standard rules. The left column indicates the player's hand, while the dealer's up card is displayed at the top. To utilize the table effectively, compute the expected values for both switching and not switching; then play the hand with the higher expected value. An example follows the table. It's also crucial to recognize that the value assigned to a blackjack differs based on whether it is natural or achieved through switching. Most casinos count a switched blackjack as 21 points, which results in a push against a dealer's 21 or 22.
Switching StrategyExpand
Player
2
3
4
5
6
7
8
9
10
A
5
-0.2695
-0.1883
-0.1509
-0.1121
-0.0723
-0.1566
-0.2219
-0.2979
-0.3448
-0.3484
6
-0.2832
-0.2004
-0.1626
-0.1236
-0.0823
-0.1891
-0.2520
-0.3250
-0.3696
-0.3732
7
-0.2551
-0.1721
-0.1347
-0.0954
-0.0561
-0.1166
-0.2558
-0.3266
-0.3607
-0.3908
8
-0.1694
-0.0884
-0.0528
-0.0172
0.0178
0.0347
-0.1049
-0.2526
-0.2918
-0.3059
9
-0.0721
0.0075
0.0384
0.0715
0.1334
0.1245
0.0534
-0.0956
-0.1957
-0.1669
10
0.0593
0.2213
0.2792
0.3386
0.3940
0.2704
0.1697
0.0722
-0.0185
-0.0088
11
0.1728
0.3313
0.3851
0.4401
0.4926
0.3362
0.2296
0.1150
0.0734
0.0639
12
-0.3561
-0.3005
-0.2783
-0.2538
-0.2108
-0.2482
-0.3055
-0.3722
-0.4086
-0.4128
13
-0.4026
-0.3439
-0.2989
-0.2551
-0.2110
-0.3021
-0.3553
-0.4130
-0.4507
-0.4544
14
-0.4389
-0.3436
-0.2993
-0.2553
-0.2110
-0.3526
-0.3977
-0.4552
-0.4901
-0.4933
15
-0.4382
-0.3436
-0.2993
-0.2556
-0.2117
-0.3946
-0.4406
-0.4943
-0.5267
-0.5297
16
-0.4385
-0.3442
-0.2998
-0.2561
-0.2131
-0.4348
-0.4774
-0.5272
-0.5575
-0.5605
17
-0.3081
-0.2175
-0.1767
-0.1382
-0.0984
-0.1731
-0.4444
-0.4789
-0.4751
-0.5677
18
-0.0416
0.0406
0.0709
0.1022
0.1315
0.3343
0.0442
-0.2419
-0.2324
-0.2772
19
0.2264
0.2986
0.3187
0.3439
0.3618
0.5510
0.5318
0.2277
0.0103
0.1376
20
0.4829
0.5466
0.5594
0.5752
0.5873
0.7077
0.7307
0.7001
0.5009
0.5472
A,2
-0.0895
-0.0208
0.0105
0.0432
0.0766
0.0754
0.0106
-0.0749
-0.1428
-0.1378
A,3
-0.1226
-0.0444
-0.0118
0.0216
0.0564
0.0338
-0.0248
-0.1098
-0.1761
-0.1713
A,4
-0.1462
-0.0659
-0.0336
0.0006
0.0365
-0.0054
-0.0665
-0.1478
-0.2102
-0.2061
A,5
-0.1673
-0.0863
-0.0531
-0.0185
0.0217
-0.0470
-0.1061
-0.1849
-0.2453
-0.2412
A,6
-0.1471
-0.0658
-0.0327
0.0068
0.0745
0.0037
-0.1189
-0.1911
-0.2399
-0.2628
A,7
-0.0401
0.0439
0.0752
0.1168
0.1779
0.3364
0.0473
-0.1433
-0.1884
-0.2023
A,8
0.2272
0.3020
0.3222
0.3463
0.3634
0.5518
0.5353
0.2311
0.0049
0.1355
A,9
0.4837
0.5492
0.5609
0.5767
0.5884
0.7090
0.7310
0.7025
0.4974
0.5510
BJ (switched)
0.7282
0.7866
0.7921
0.7980
0.8032
0.8613
0.8703
0.8829
0.9060
0.8505
BJ (natural)
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
A,A
0.1795
0.3383
0.3923
0.4474
0.5018
0.3487
0.2428
0.1265
0.0717
0.0155
2,2
-0.2548
-0.1748
-0.1389
-0.0831
0.0147
-0.1101
-0.1933
-0.2720
-0.3204
-0.3247
3,3
-0.2833
-0.2013
-0.1622
-0.1101
-0.0103
-0.1661
-0.2520
-0.3249
-0.3696
-0.3733
4,4
-0.1692
-0.0884
-0.0522
-0.0160
0.0196
0.0359
-0.1041
-0.2525
-0.2912
-0.3049
5,5
0.0603
0.2224
0.2808
0.3429
0.4005
0.2739
0.1705
0.0719
-0.0186
-0.0086
6,6
-0.3571
-0.3004
-0.2599
-0.1645
-0.0624
-0.2517
-0.3083
-0.3741
-0.4106
-0.4142
7,7
-0.4369
-0.2850
-0.1968
-0.1061
-0.0102
-0.1829
-0.4016
-0.4600
-0.4962
-0.4984
8,8
-0.2984
-0.0946
-0.0146
0.0627
0.1461
0.1814
-0.1555
-0.5026
-0.5576
-0.5595
9,9
-0.0401
0.0417
0.0988
0.1730
0.2442
0.3359
0.1220
-0.1844
-0.2297
-0.2738
10,10
0.4829
0.5466
0.5594
0.5752
0.5873
0.7077
0.7307
0.7001
0.5009
0.5472
Example: In the first hand, there’s Q7, in the second hand, there’s 9J, and the dealer is showing a 2. The player cannot switch to achieve a total of 17 and 19, or they can switch to reach 20 and 16. Calculating, the value for 17 and 19 is -0.3081 + 0.2264 = -0.0817. Conversely, for 20 and 16, it comes out to 0.4829 - 0.4385 = +0.0444. Thus, in this scenario, opting for 20 and 16 is the better choice, indicating that the player should switch.
The switching strategy derived from the Las Vegas rules table has an error rate of only 548 instances out of 100,000 plays, making the chance of an error just 0.37%. Such errors would marginally increase the house edge by only 0.0002%. There exist around 300 variations between switching strategies used in Playtech and those in Las Vegas rules, primarily occurring when the dealer is showing a 6, 10, or an ace, with no discrepancies when the dealer displays an 8.
Strategy Calculator
My Blackjack Switch calculator This tool, provided by Jing Ding, will help determine when to switch in any context. The calculator is built on Playtech rules along with an assumption of an infinite deck.